3,366 research outputs found

    Learning Design: reflections on a snapshot of the current landscape

    Get PDF
    The mounting wealth of open and readily available information and the swift evolution of social, mobile and creative technologies warrant a re-conceptualisation of the role of educators: from providers of knowledge to designers of learning. This need is being addressed by a growing trend of research in Learning Design. Responding to this trend, the Art and Science of Learning Design workshop brought together leading voices in the field and provided a forum for discussing its key issues. It focused on three thematic axes: practices and methods, tools and resources, and theoretical frameworks. This paper reviews some definitions of Learning Design and then summarises the main contributions to the workshop. Drawing upon these, we identify three key challenges for Learning Design that suggest directions for future research

    Quasiparticle Resonances in the BCS Approach

    Full text link
    We present a simple method for calculating the energies and the widths of quasiparticle resonant states. The method is based on BCS equations solved in the Berggren representation. In this representation the quasiparticle resonances are associated to the Gamow states of the mean field. The method is illustrated for the case of neutron-rich nuclei 2022^{20-22}O and 84^{84}Ni. It is shown that the contribution of the continuum coupling to the pairing correlations is small and largely dominated by a few resonant states close to the continuum threshold.Comment: 14 pages, 2 figure

    Gamow Shell Model Description of Neutron-Rich Nuclei

    Get PDF
    This work presents the first continuum shell-model study of weakly bound neutron-rich nuclei involving multiconfiguration mixing. For the single-particle basis, the complex-energy Berggren ensemble representing the bound single-particle states, narrow resonances, and the non-resonant continuum background is taken. Our shell-model Hamiltonian consists of a one-body finite potential and a zero-range residual two-body interaction. The systems with two valence neutrons are considered. The Gamow shell model, which is a straightforward extension of the traditional shell model, is shown to be an excellent tool for the microscopic description of weakly bound systems. It is demonstrated that the residual interaction coupling to the particle continuum is important; in some cases, it can give rise to the binding of a nucleus.Comment: 4 pages, More realistic s.p. energies used than in the precedent versio

    Temperature dependent BCS equations with continuum coupling

    Get PDF
    The temperature dependent BCS equations are modified in order to include the contribution of the continuum single particle states. The influence of the continuum upon the critical temperature corresponding to the phase transition from a superfluid to a normal state and upon the behaviour of the excitation energy and of the entropy is discussed.Comment: 9 pages, 3 figures, to appear in Phys. Rev.

    Complex 2D Matrix Model and Geometrical Map on Complex-Nc Plane

    Full text link
    We study the parameter dependence of the internal structure of resonance states by formulating Complex two-dimensional (2D) Matrix Model, where the two dimensions represent two-levels of resonances. We calculate a critical value of the parameter at which "nature transition" with character exchange occurs between two resonance states, from the viewpoint of geometry on complex-parameter space. Such critical value is useful to know the internal structure of resonance states with variation of the parameter in the system. We apply the model to analyze the internal structure of hadrons with variation of the color number Nc from infinity to a realistic value 3. By regarding 1/Nc as the variable parameter in our model, we calculate a critical color number of nature transition between hadronic states in terms of quark-antiquark pair and mesonic molecule as exotics from the geometry on complex-Nc plane. For the large-Nc effective theory, we employ the chiral Lagrangian induced by holographic QCD with D4/D8/D8-bar multi-D brane system in the type IIA superstring theory.Comment: 14 pages, 8 figures, 1 table, figures and appendixes added, results unchange

    Drift Correction for Scanning-Electron Microscopy by

    Get PDF
    Scanning electron micrographs at high magnification (100,000x and up) are distorted by motion of the sample during image acquisition, a phenomenon called drift. We propose a method for correcting drift distortion in images obtained on scanning electron and other scanned-beam microscopes by registering a series of images to create a drift-free composite. We develop a drift-distortion model for linear drift and use it as a basis for an affine correction between images in the sequence. The performance of our correction method is evaluated with simulated datasets and real datasets taken on both scanning electron and scanning helium-ion microscopes; we compare performance against translation only correction. In simulation, we exhibit a 12.5 dB improvement in SNR of our drift-corrected composite compared to a non-aligned composite, and a 3 dB improvement over translation correction. A more modest 0.
    corecore